

Multi-Instrument Intercomparison

Design & Deployment

Multi-Tier Architecture

Technology Stack: MIIC Tier

- PostgreSQL-Spring-Tomcat-Linux
- Spring Framework for Java
 - Requires only web container (Tomcat) to deploy
 - Works well with JavaEE (JPA2, transactions, etc.)
 - Spring Model-View-Controller Web pages & REST interface
 - Spring Security Authentication & authorization
 - REST template, spring expression language, other stuff...
 - Core features encourage good design
 - Dependency injection keep classes generic & free of configuration

Technology Stack:

- OPeNDAP Hyrax Server w/ MIIC plugin (C++)
 - Latest server version, available as RPM
 - Current plugin version 1.3 (also available as RPM)
- Plugin is very general & should have uses beyond MIIC
 - Works on any file type supported by OPeNDAP (HDF-EOS, etc)
 - 2D histogram: return averaged data w/ statistics
 - Choose x & y axis data variables, range, and # bins
 - Tuple: return subset data (flat or retaining original shape)
 - Filter all observations by expression
 - Generate new observations from expression
 - Decimate huge data variables (i.e. skip value)

OPeNDAP expression examples

Apply expression to variable: convert SSF co-latitude to latitude

```
define_var(eval_expr(Time_and_Position_Colatitude_o
f_subsatellite_point_at_surface_at_observation,"90-
val"),"latitude",0,180,UNBOUND)
```

• Filter observations using expression: SSF wavelength is not 11.03 or 12.02

```
define_filter_expr(Footprint_Imager_Radiance_Statis
tics_Imager_channel_central_wavelength,"val !=
11.03 && val != 12.02")
```


OPeNDAP 2D Histogram for lat/lon charts

- From another study: volume of data (GB) to build 24 or 192 level 2 SSF images for one data var.
 - Left: Volume of file data to process
 - Right: Volume of averaged data in image
 - Process ~6x less data @ webserver

Technology Stack: Client

- HTML5 + CSS + Javascript
- jQueryUI interface components
 - Interactive, attractive, simplifies server-side
 - AJAX + JSON for dynamic data
- REST API
 - Can be written in any language, uses security
 - XML + netCDF are data transfer formats
- Google Maps (might replace with cesium)

Current MIIC Stats

- Tomcat Webapp
 - ~20 second startup
- Database size
 - ~8M initial size, 17 tables
- Java code stats via Eclipse Metrics plugin
 - 14K LOC
 - 190 classes, avg. 10.5 methods per class

Application Tier Component-Based Design

MIIC Deployment Plan

MIIC Deployment Issues

- Data Volume
- Security
- Authentication
- Availability
- Scalability
- Maintenance

Data Volume

- Expected low number of users
- Very low MIIC DB usage. DB stores only metadata (data product metadata, user-owned plans and associated entities)
- No policy on how much data one user can access
- Plan data cached locally and available for pick-up when plan is completed
 - Users retrieve data zip via HTTP request
 - Need timer to discard abandoned user data
 - Investigate integrating with ANGe FTP pick-up capability
 - Offload data downloading from our server
 - Offload data storage & maintenance also

Possible Data Policies

- Limit data returned by OPeNDAP query on a single file
 - Data size influenced by combination of:
 - Number of histogram bins
 - Filters in particular, lat/lon bounding area
 - Number of data variables selected
 - Difficult to predict the effect of filters on resulting data size
 - Stop plans if (for example) the query return data > 20% of the file size
- Limit volume of data retrieved per user
 - Volume depends on # events, files per event, size of file query
 - Pause plans after daily limit is exceeded, allow to resume later
 - Stop plans if we can predict total size exceeds limit

Security

- OPeNDAP security currently not enabled
 - Security primarily through webserver config (i.e. Apache)
 - May want to restrict outside access to "/opendap" URL
- MIIC webapp uses Spring security
 - All URL access goes through spring (including REST)
 - Static resource files (images, etc.) bypass security
 - All other URLs use declarative role-based security: ROLE_USER or ROLE_ADMIN
 - Service layer verifies authenticated user vs. owned entities
- Other
 - Webapp uses "remember me" tokens which expire after 14 days

Authentication (Webapp)

- Local database authentication (form based)
- NASA URS authentication (OAuth2) on branch
 - 1. Accessing an unauthorized URL redirects to URS for login
 - 2. User must grant access to MIIC application (one time only)
 - 3. URS redirects back to MIIC with authorization token
 - 4. MIIC requests access token from URS
 - 5. MIIC requests user profile from URS
 - Regardless of auth scheme, MIIC stores additional user record in database (needed for ROLE, if not password)

Authentication (OPeNDAP)

- Authentication can also be added to OPeNDAP servers
 - http://docs.opendap.org/index.php/Hyrax User_Identification_
 %28Authentication%29
 - Managed by Apache webserver plugins
 - LDAP & OAuth2 might be of interest to data center...

Availability/Scalability (OPeNDAP)

- One OPeNDAP query per core
 - 32+32 simultaneous queries
- MIIC shares the (64) open slots among all users round-robin
- OPeNDAP config options
 - Currently using single OLFS (round-robin)
 - Doesn't handle crashed BES
 - Apache proxy balancer should handle crashed BES

Availability/Scalability (Webapp)

- Event prediction is CPU intensive task
 - Algorithm predicts events at 1 day interval
 - Limited to # cores (@miic1, 32 simultaneous days)
 - Time to run 1 day influenced by users' event prediction options
- Scale via multiple MIIC webapps (unlikely)
 - Currently would need load balancers with sticky sessions
- Scale via terracotta cluster (more likely)
 - Distributed processing tasks (e.g. speed up large event predictions)
 - Distributed data cache (future use-cases -- processing tasks that must run on large data!)

Availability/Scalability (Other)

- SpaceTrack limits users to max queries per minute
 - Should not be a concern, we can pre-load all TLEs if necessary
- OPeNDAP data file availability issues
 - Multiple OPeNDAP servers are supported
 - No a-priori knowledge of archive structure is required (MIIC will crawl OPeNDAP servers to find files for a data collection)
 - Can achieve redundancy by serving the same file from multiple OPeNDAP servers

Maintenance/Operations

- Support for new data collections can be added in a spring XML config file, automatically uploaded to the DB at startup
 - Detailed product metadata from OPeNDAP file metadata
- Java properties files
 - Credentials (database, space-track, URS app secret key)
 - OPeNDAP server locations and some tunable settings
- Webapp ROLE_ADMIN features
 - Full access to all user plans
- Jconsole (if Tomcat configured to allow connection)
 - Clear OPeNDAP cache (necessary if location of files on server changes)
 - Change log level (e.g. enable additional debug logging)

Deployment to-do list

- ☐ Enable secure JConsole access
- Merge URS Authentication Branch?
 - ☐ Admin page to grant ROLE_USER (control who has access)
 - ☐ Test REST access w/ URS cookie
- □ Security
 - ☐ If using OAuth2 & secure tokens, is https required?
 - □ Independent audit?
 - ☐ Open up /miic URL to the web
- □ Define & Implement Data Policies
 - Maximum data on a per-file basis?
 - Maximum data on a per-user basis?
 - ☐ Clean-up cached data

